Articles online

Ozone Catalytic Oxidation of Gaseous Toluene over MnO2-Based Ozone Decomposition Catalysts Immobilized on a Nonwoven Fabric

Category: Control Techniques and Strategy

Volume: 17 | Issue: 8 | Pages: 2110-2118
DOI: 10.4209/aaqr.2017.01.0045
PDF | RIS | BibTeX

Kazuhiko Sekiguchi 1, Yuki Kurita1, Kenshi Sankoda1, Norikazu Namiki2, Fumio Yasui1,3, Hajime Tamura3

  • 1 Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
  • 2 Faculty of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
  • 3 Techno Ryowa Ltd., Toshima, Tokyo 170-0005, Japan


A thin, flexible nonwoven ozone decomposition catalyst (ODC) was developed.
Toluene was degraded by ozone catalytic oxidation (OZCO) on the nonwoven ODC.
Catalyst amount for the ozone concentration is easily decided for the nonwoven ODC.
Toluene was mineralized at low O3 concentrations, especially under UV254 irradiation.


Degradation of toluene gas by ozone catalytic oxidation (OZCO) by using a MnO2-based ozone decomposition catalyst (ODC) was investigated to clarify the reactive site of ODC material with O3. An optimum structure for the ODC to remove O3 and toluene were proposed. For honeycomb ODC, toluene degradation by OZCO occurred only around the entrance of the honeycomb ODC, and we expected that a thinner ODC would increase the toluene degradation efficiency. A nonwoven fabric on which ODC was immobilized was developed to decompose O3 and volatile organic compounds simultaneously. The toluene degradation ratio and the mineralization of toluene to CO2 were determined to evaluate the performance of the fabric. Furthermore, the effects of relative humidity and O3 concentration on the decomposition and mineralization ratios were also investigated with or without 254 nm UV irradiation (UV254). The fabric decomposed and mineralized toluene to CO2, even at low O3 concentrations. Although high humidity reduced the degradation ratio of toluene, UV254 irradiation improved the recovery of the degradation ratio and increased the mineralization ratio.


Ozone decomposition catalyst (ODC) Ozone catalytic oxidation (OZCO) Toluene gas Nonwoven fabric UV irradiation

Related Article

Analysis of Reduction Potential of Primary Air Pollutant Emissions from Coking Industry in China

Yan Wang, Ke Cheng , He-Zhong Tian, Peng Yi, Zhi-Gang Xue
Volume: 18 | Issue: 2 | Pages: 533-541
DOI: 10.4209/aaqr.2017.04.0139
PDF | Supplemental material

Computer Simulation Studies of Structure Characteristics of Ordered Mesoporous Carbons and its Naphthalene Adsorption Performance

Keliang Wang, Mingli Fu, Junliang Wu, Guangying Zhou, Daiqi Ye
Volume: 18 | Issue: 2 | Pages: 542-548
DOI: 10.4209/aaqr.2016.12.0562

Improved Photocatalytic Air Cleaner with Decomposition of Aldehyde and Aerosol-Associated Influenza Virus Infectivity in Indoor Air

Kimiyasu Shiraki , Hiroshi Yamada, Yoshihiro Yoshida, Ayumu Ohno, Teruo Watanabe, Takafumi Watanabe, Hiroyuki Watanabe, Hidemitsu Watanabe, Masao Yamaguchi, Fumio Tokuoka, Shigeatsu Hashimoto, Masakazu Kawamura, Norihisa Adachi
Volume: 17 | Issue: 11 | Pages: 2901-2912
DOI: 10.4209/aaqr.2017.06.0220

High Selectivity of Visible-Light-Driven La-doped TiO2 Photocatalysts for NO Removal

Yu Huang, Jun-Ji Cao, Fei Kang, Sheng-Jie You, Chia-Wei Chang, Ya-Fen Wang
Volume: 17 | Issue: 10 | Pages: 2555-2565
DOI: 10.4209/aaqr.2017.08.0282