OPEN ACCESS

Articles online

CO2 Capture Behaviors of Amine-Modified Resorcinol-Based Carbon Aerogels Adsorbents

Category: Special Issue for the 12th World Filtration Congress

Volume: 17 | Issue: 11 | Pages: 2715-2725
DOI: 10.4209/aaqr.2016.12.0597
PDF | Supplemental material | RIS | BibTeX

Wenjing Xie1,2, Meiqing Yu1, Rui Wang 1

  • 1 School of Environmental Science and Engineering, Shandong University, Jinan 250199, China
  • 2 Hainan Research Academy of Environmental Sciences, Haikou 571126, China

Highlights

Amine-loaded activated carbon aerogels has been developed for 5% CO2 capture.
Carbon aerogel was prepared by soft-template, conventional drying and activation.
The activated carbon aerogels exhibit high specific surface area and porosity.
PEI-loaded activated carbon aerogels show CO2 adsorption capacity of 2.06 mmol g–1.
Deactivation and kinetic models were used to analyze the adsorption process.


Abstract

Activated carbon aerogel (CA)-based amine-loaded adsorbent has been successfully developed for CO2 capture. The adsorbents were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption/desorption and thermogravimetric analysis (TGA). The CO2 adsorption performance was tested by the fixed bed system at 5% CO2 concentration. The effects of the mass ratio of KOH to CA, type of amine, amine loadings, addition of polyethylene glycol (PEG) or surfactants and adsorption temperature on the CO2 capture performance of amine-loaded activated CA as well as the regeneration capability were examined. The results show that the adsorbents effectively remove 5% CO2 from gas mixtures. The optimum adsorption temperature and amine loadings of polyethyleneimine (PEI)-loaded activated CA are 75°C and 55 wt.% respectively at the activation mass ratio KOH to CA of 1. Under these optimum conditions, the PEI-loaded activated CA reaches the highest adsorption capacity of 2.06 mmol g–1 adsorbent. Addition of PEG facilitates the CO2 adsorption. Suyadal’s and Yasyerli’s deactivation models both fit the experimental breakthrough curves of tetraethylenepentamine (TEPA)-loaded activated CA better than that of PEI-loaded activated CA. The adsorption kinetics nonlinear fitting results show that the adsorption process follows Bangham model.

Keywords

CO2 adsorption Carbon aerogel Amine Deactivation model Kinetics


Related Article

On the Special Issue for the 12th World Filtration Congress

David Y.H. Pui, Wilhelm Höflinger, Jing Wang, Chuen-Jinn Tsai
Volume: 17 | Issue: 11 | Pages: 2643-2644
DOI: 10.4209/aaqr.2017.09.0332
PDF

Study of Flow Patterns in Two-Stage Mode of Moving Granular Bed Filter

Chia-Wei Chang, Shu-San Hsiau , Yi-Shun Chen, Yan-Pin Chyou, Jiri Smid
Volume: 17 | Issue: 11 | Pages: 2691-2704
DOI: 10.4209/aaqr.2016.12.0588
PDF

Inter-Laboratory Validation of the Method to Determine the Filtration Efficiency for Airborne Particles in the 3–500 nm Range and Results Sensitivity Analysis

Panagiota Sachinidou, Yeon Kyoung Bahk, Min Tang, Ningning Zhang, Shawn S.C. Chen, David Y.H. Pui, Bruno Araújo Lima, Gabriele Bosco, Paolo Tronville, Thomas Mosimann, Mikael Eriksson, Jing Wang
Volume: 17 | Issue: 11 | Pages: 2669-2680
DOI: 10.4209/aaqr.2017.03.0104
PDF | Supplemental material

Fabrication and Characterization of Polysulfone Membranes Coated with Polydimethysiloxane for Oxygen Enrichment

Kok Chung Chong , Soon Onn Lai, Woei Jye Lau, Hui San Thiam, Ahmad Fauzi Ismail, Abdul Karim Zulhairun
Volume: 17 | Issue: 11 | Pages: 2735-2742
DOI: 10.4209/aaqr.2016.12.0571
PDF
;