OPEN ACCESS

Articles online

Application of Gas Cyclone–Liquid Jet Absorption Separator for Flue-Gas Desulfurization

Category: Control Techniques and Strategy

Article In Press
DOI: 10.4209/aaqr.2016.12.0574
PDF | RIS | BibTeX

Yi-Mou Wang, Xue-Jing Yang, Peng-Bo Fu, Liang Ma , An-Lin Liu, Meng-Ya He

  • School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

Highlights

A novel cyclone integrates cyclone separation, liquid jet and absorption separation.
A novel cyclone harnesses the coupling effect of jet and cyclone flow fields.
The traditional desulfurization process was optimized by employing a novel cyclone.
The optimized process showed less investment, lower consumption, higher efficiency.


Abstract

A gas cyclone–liquid jet absorption separator integrates the functions of cyclone separation, liquid jet atomization, and absorption separation. This study employed this device to conduct a wet flue-gas desulfurization experiment on a gas mixture consisting of air in room temperature and sulfur dioxide (SO2) to explore this device’s prospect of tail gas purification. Sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) solutions at various concentrations were used as absorbents under room temperature. The changes in the SO2 removal efficiency and air pressure drop were investigated with parameters including total gas flow, SO2 concentration in the flue gas, and absorbent flow. The SO2 removal efficiency increased to a certain extent as the absorbent concentration, total gas flow, and absorbent flow increased. The maximum SO2 removal efficiencies of NaOH and Na2CO3 were 85% and 77%, respectively. Under identical experimental conditions, the changes in SO2 removal efficiencies of NaOH and Na2CO3 exhibited essentially identical trends, in which NaOH exhibited a 5%–8% greater SO2 removal efficiency than Na2CO3.

Keywords

Flue-gas desulfurization Cyclonic separation Jet flow Absorption separation


Related Article

High Selectivity of Visible-Light-Driven La-doped TiO2 Photocatalysts for NO Removal

Yu Huang, Jun-Ji Cao, Fei Kang, Sheng-Jie You, Chia-Wei Chang, Ya-Fen Wang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.08.0282
PDF

Study of Flow Patterns in Two-Stage Mode of Moving Granular Bed Filter

Chia-Wei Chang, Shu-San Hsiau , Yi-Shun Chen, Yan-Pin Chyou, Jiri Smid
Accepted Manuscripts
DOI: 10.4209/aaqr.2016.12.0588
PDF
;