Articles online

Combined Impact of Tropical Cyclones and Surrounding Circulations on Regional Haze-Fog in Northern China

Category: Urban Air Quality

Article In Press
DOI: 10.4209/aaqr.2016.12.0549
PDF | RIS | BibTeX

Ziqi Cao1, Lifang Sheng 2,3, Qian Liu1, Yina Diao1,2, Wencai Wang1,2, Wenjun Qu2,3

  • 1 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
  • 2 Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, China
  • 3 Key Laboratory of Ocean-Atmosphere Interaction and Climate of Shandong Province, Qingdao, China


30.5% of regional haze-fog events in summer were related to tropical cyclones.
The subtropical high and westerly trough affected tropical cyclone-related haze-fog.
Regional haze-fog frequency varied inversely with distance to tropical cyclone.


Some haze-fog events in Asia have been attributed to tropical cyclone activity; however, uncertainty exists regarding the relationship between the influence of tropical cyclones and the occurrence of haze-fog events. In this study, the statistical relationship between tropical cyclones in the Northwest Pacific and the haze-fog events in northern China during summers from 2001 to 2012 were analyzed. It was found that 30.5% of regional haze-fog events were related to tropical cyclones. The influence of tropical cyclones on haze-fog events was analyzed and compared based on classification of tropical cyclones by position and path. The results showed that tropical cyclones can form advantageous conditions for regional haze-fog events through dynamic and thermal processes, such as strengthening the downdraft, and increasing relative humidity and stability. The dynamic influence was dominant when the distance between a tropical cyclone and northern China was larger than the range of tropical cyclone airflow, and the contribution of thermal influence increased as the distance decreased. Furthermore, the surrounding circulations, such as the Northwest Pacific subtropical high and the westerly trough, also contributed to the regional haze-fog events. Their position, intensity and collocation with tropical cyclones could be the determining factors for haze-fog occurrence. This study illuminates the primary mechanisms of the combined effect of tropical cyclones and the surrounding circulations on regional air quality, which could improve forecasts of summer regional haze-fog events in northern China.


Haze-fog Tropical cyclone Circulation Northwest Pacific subtropical high Westerly trough

Related Article

Impact of Atmospheric Flow Conditions on Fine Aerosols in Sydney, Australia

Jagoda Crawford , David D. Cohen, Alan D. Griffiths, Scott D. Chambers, Alastair G. Williams, Eduard Stelcer
Volume: 17 | Issue: 7 | Pages: 1746-1759
DOI: 10.4209/aaqr.2017.02.0083
PDF | Supplemental material

Chemical Characteristics and Source Apportionment of PM2.5 and Long-Range Transport from Northeast Asia Continent to Niigata in Eastern Japan

Ping Li , Keiichi Sato, Hideo Hasegawa, Minqun Huo, Hiroaki Minoura, Yayoi Inomata, Naoko Take, Akie Yuba, Mari Futami, Tsukasa Takahashi, Yuka Kotake

Temporal Variation of Atmospheric Static Electric Field and Air Ions and their Relationships to Pollution in Shanghai

Yifan Wang, Yanyu Wang, Junyan Duan, Tiantao Cheng , Hailin Zhu, Xin Xie, Yuehui Liu, Yan Ling, Xiang Li, Hongli Wang, Mei Li, Renjian Zhang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.07.0248

Effects of Chemical Composition of PM2.5 on Visibility in a Semi-Rural City of Sichuan Basin

Yun-Chun Li , Man Shu, Steven Sai Hang Ho , Jian-Zhen Yu, Zi-Bing Yuan, Xian-Xiang Wang, Xiao-Qing Zhao