OPEN ACCESS

Articles online

A Set-up for Respiratory Tract Deposition Efficiency Measurements (15–5000 nm) and First Results for a Group of Children and Adults

Category: Air Pollution and Health Effects

Volume: 17 | Issue: 5 | Pages: 1244-1255
DOI: 10.4209/aaqr.2016.09.0425
PDF | Supplemental material | RIS | BibTeX

Jenny Rissler 1,2, Hanna Nicklasson3, Anders Gudmundsson2, Per Wollmer3, Erik Swietlicki4, Jakob Löndahl2

  • 1 Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, SE-223 70 Lund, Sweden
  • 2 Ergonomics and Aerosol Technology, Lund University, Box 118, SE-221 00 Lund, Sweden
  • 3 Clinical Physiology and Nuclear Medicine, SUS, SE-205 02 Malmö, Sweden
  • 4 Nuclear Physics, Lund University, SE-221 00 Lund, Sweden

Highlights

A set-up described for lung deposition fraction the full size range 15–5000 nm.
First experimental results using the set-up for a large group of subjects (67) and.
Subjects within a wide age span (7–70 years).
Results presented focus on individual variability.


Abstract

Exposure to airborne particulate matter is associated with a number of negative health effects ranging from respiratory diseases to systemic effects and cancer. One important factor for understanding the health effects is the individual variation in the respiratory tract deposition of inhaled particles. In this study, we describe an experimental set-up for size-resolved measurements of the lung deposited fraction of airborne particles, covering the diameter range from 15 to 5000 nm. The set-up includes a system for generating a stable aerosol with a sufficiently broad size distribution. We used a scanning mobility particle sizer and an aerodynamic particle sizer to determine particle number and size. The set-up was used to investigate individual differences in the deposition fraction (DF) of particles in the respiratory tract for a group of 67 subjects of both sexes aged 7–70 years. The measured DF was applied to two model aerosols, one representing an urban environment and one a rural environment, and the particle deposition rates were derived (i.e., the deposited amount of particles per unit time). Furthermore, the deposition rates were normalized to lung surface area and body mass – two dose measures that are considered relevant for the health effects of airborne particles. In addition to validation of the set-up, we show that there is a large individual variation in DF, with some subjects having a DF that is more than twice as high as that of others. Although we observe differences in the DF between different subgroups, most individual variation was explained neither by age nor by gender. When normalizing the deposition rates to lung surface area or body mass, the deposition rates of children become significantly higher than those of adults. Furthermore, the individual variability is larger for the lung surface area or body mass normalized deposition rates than for DF.

Keywords

Aerosols Airborne particles Deposition efficiency Individual variability Dose rate


Related Article

Impact of Atmospheric Flow Conditions on Fine Aerosols in Sydney, Australia

Jagoda Crawford , David D. Cohen, Alan D. Griffiths, Scott D. Chambers, Alastair G. Williams, Eduard Stelcer
Volume: 17 | Issue: 7 | Pages: 1746-1759
DOI: 10.4209/aaqr.2017.02.0083
PDF | Supplemental material

Radiative Forcing Estimation of Aerosols at an Urban Site near the Thar Desert Using Ground-Based Remote Sensing Measurements

Sunita Verma, Divya Prakash, Atul Kumar Srivastava, Swagata Payra
Volume: 17 | Issue: 5 | Pages: 1294-1304
DOI: 10.4209/aaqr.2016.09.0424
PDF

Impact of Dust Storms on NPAHs and OPAHs in PM2.5 in Jinan, China, in Spring 2016: Concentrations, Health Risks, and Sources

Pan Jiang, Lingxiao Yang , Xiangfeng Chen, Ying Gao, Yanyan Li, Junmei Zhang, Tong Zhao, Hao Yu, Wenxing Wang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.08.0274
PDF

Commuting in Los Angeles: Cancer and Non-Cancer Health Risks of Roadway, Light-Rail and Subway Transit Routes

Christopher Lovett, Farimah Shirmohammadi, Mohammad H. Sowlat, Constantinos Sioutas
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.09.0331
PDF
;