OPEN ACCESS

Articles online

Characteristics and Sources of Speciated Atmospheric Mercury at a Coastal Site in the East China Sea Region

Category: Air Toxics

Article In Press
DOI: 10.4209/aaqr.2016.09.0402
PDF | Supplemental material | RIS | BibTeX

Lei Zhang1, Long Wang1, Shuxiao Wang 1,2, Hongying Dou1, Jianfeng Li1, Shu Li1, Jiming Hao1,2

  • 1 School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
  • 2 State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China

Highlights

Diurnal patterns of speciated Hg show downward mixing of enhanced TGM aloft.
Repartitioning of reactive Hg from particles to the air is a major RGM source.
Industrial pollution in the North China Plain region is a major TGM contributor.
Biomass burning in North and Northeast China is a major Hg source in autumn.
Low-altitude Hg outflow from East China to North America mostly ascended.


Abstract

Atmospheric mercury is a global concern due to its ability of long-range transport. In order to understand the characteristics and sources of speciated mercury in the East China Sea region, a coastal monitoring site was established on Chongming Island in Shanghai, China. Total gaseous mercury (TGM), reactive gaseous mercury (RGM) and particulate-bound mercury (PHg) were monitored during 2009–2012. The overall average TGM, RGM and PHg concentrations were 2.65 ± 1.73 ng m–3, 8.0 ± 8.8 pg m–3 and 21.5 ± 25.4 pg m–3, respectively. TGM has a sharp increase at 5:00 in the morning and reaches peak at about 8:00, which is probably caused by the downward mixing of enhanced TGM aloft originated from regional sources. Wind roses suggest that urban Shanghai area has a considerable contribution to TGM in Chongming. Repartitioning of reactive mercury from particles to the air under the influence of air temperature could be one major source of RGM. Four heavy mercury pollution episodes were selected for source analysis. Mercury pollution in the summer event is mainly from the southwest direction with high ∆TGM/∆CO ratio and has the most influence on the North China Plain (NCP) region. The winter event is mainly under the influence of industrial pollution from the NCP region. The autumn event is contributed by both industrial pollution and biomass burning in North and Northeast China exhibiting a lower slope of ∆PHg/∆TGM. Springtime Asian long-range transport (ALRT) is crucial to the mercury background of North America. However, in the spring event identified in this study the mercury outflow from low altitude through East China mostly ascended to high altitude during the transpacific airmass transport. This provides an important incentive for future studies to focus on the way of mercury outflow from East Asia.

Keywords

Speciated mercury East China Sea region Reactive mercury partitioning HYSPLIT trajectories Outflow


Related Article

Size Distribution of Inorganic Elements in Bottom Ashes from Seven Types of Bio-Fuels across Beijing-Tianjin-Hebei Region, China

Zhiyong Li , Huiqiao Ma, Fan Lin, Peng Zhao, Lei Wang, Yunjun Jiang, Caixiu An, Aiqin Liu, Zishu Hu, Hui Jin
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.08.0296
PDF

Seasonal Trends of Atmospheric PAHs in Five Asian Megacities and Source Detection Using Suitable Biomarkers

Mahua Saha, Dusmant Maharana, Rina Kurumisawa, Hideshige Takada , Bee Geok Yeo, Andrea C. Rodrigues, Badal Bhattacharya, Hidetoshi Kumata, Tomoaki Okuda, Kebin He, Yongliang Ma, Fumiyuki Nakajima, Mohamad Pauzi Zakaria, Duong Hoang Giang, Pham Hung Viet
Volume: 17 | Issue: 9 | Pages: 2247-2262
DOI: 10.4209/aaqr.2017.05.0163
PDF | Supplemental material

Persistent Organic Pollutant Reductions from a Diesel Engine Generator Fueled with Waste Cooking Oil-based Biodiesel Blended with Butanol and Acetone

Jen-Hsiung Tsai, Sheng-Lun L in, Shui-Jen Chen , Guo-Ping Chang-Chien, Bo-Cheng Jheng, Kuo-Lin Huang, Chih-Chung Lin, Juei-Yu Chiu
Volume: 17 | Issue: 8 | Pages: 2041-2050
DOI: 10.4209/aaqr.2017.07.0233
PDF
;