OPEN ACCESS

Articles online

Measured Indoor Aerosol Concentration Arising from Commonly-Used Food and Medicinal Powders: A Pilot Study

Category: Air Pollution and Health Effects

Volume: 17 | Issue: 3 | Pages: 843-848
DOI: 10.4209/aaqr.2016.08.0345
PDF

Export Citation:  RIS | BibTeX

Roy Thomas, Miriam Byrne

  • School of Physics and Centre for Climate and Air Pollution Studies (C-CAPS), National University of Ireland Galway, Galway, Ireland

Highlights

Literature review regarding self-exposure and bystander exposure to consumer powders.
Methodology development for systematic size distribution analysis of powders.
Exposure estimation for inhalation of six powders relevant to domestic usage.


Abstract

Inhalation exposures in the ambient environment may trigger allergic or other adverse responses in susceptible individuals, and this study aims to elucidate the contribution, if any, of airborne particles resulting from commonly-used medicinal and food powders to this response. In a laboratory room, six powders (two types of paracetamol-containing sachet, dried skimmed milk, instant coffee powder containing milk, a non-dairy coffee whitener containing milk protein, and a powdered peanut butter) were individually utilised under representative “real life” conditions, with ten replicates in each case. Particle concentrations were measured at the emission location and at a distance of 1 m. For each powder, a large variation in evolved particle concentrations is seen between individual events. Of the powders tested, only flavoured paracetamol demonstrated any potential for dispersion to a distance of 1 m from the source. Short term exposures were estimated and from these, it was concluded that the particle concentrations evolving from powdered peanut butter and paracetamol powders were of little concern, although further investigation of specific scenarios is merited. The range of short-term exposures calculated for milk powder products was 0.019–0.087 µg, which was comparable to estimated levels that have elicited adverse health responses in other studies.

Keywords

Powder Human Exposure Indoor air pollution


Related Article

Source Identification on High PM2.5 Days Using SEM/EDS, XRF, Raman, and Windblown Dust Modeling

Jeff Wagner , Zhong-Min Wang, Sutapa Ghosal, Stephen Wall
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.05.0276
PDF

Analysis of PAHs Associated with PM10 and PM2.5 from Different Districts in Nanjing

Xiansheng Liu, J├╝rgen Schnelle-Kreis, Brigitte Schloter-Hai, Lili Ma , Pengfei Tai, Xin Cao, Cencen Yu, Thomas Adam, Ralf Zimmermann

Traffic Condition and Emission Factor from Diesel Vehicles within the Kathmandu Valley

Enna Mool, Prakash V. Bhave, Nita Khanal, Rejina M. Byanju, Sagar Adhikari, Bhupendra Das, Siva P. Puppala

Comparative Study of PAHs in PM1 and PM2.5 at a Background Site in the North China Plain

Yan Zhang, Lingxiao Yang , Ying Gao, Jianmin Chen, Yanyan Li, Pan Jiang, Junmei Zhang, Hao Yu, Wenxing Wang
;