Articles online

Size Specific Distribution Analysis of Perfluoroalkyl Substances in Atmospheric Particulate Matter – Development of a Sampling Method and their Concentration in Meeting Room/Ambient Atmosphere

Category: Air Toxics

Volume: 17 | Issue: 2 | Pages: 553-562
DOI: 10.4209/aaqr.2016.07.0292
PDF | Supplemental material | RIS | BibTeX

Hui Ge1,2, Eriko Yamazaki2, Nobuyoshi Yamashita2, Sachi Taniyasu2, Tong Zhang1, Mitsuhiko Hata1, Masami Furuuchi 1

  • 1 College of Science and Engineering, Kanazawa University, Ishikawa 920-1192, Japan
  • 2 National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8569, Japan


Sampling and analysis method for particulate PFASs have been developed.
Most of the PFASs in the room air showed highest concentration under 0.5 µm.
The outdoor air had more particles with less PFASs fraction than indoor.


The international regulation of persistent organic pollutants (POPs) according to the Stockholm convention started in May 2001, and is intended to regulate the production and use of hazardous chemicals on a global scale. PFOS is one of the newly listed emerging POPs and only one of a diverse huge group of perfluoroalkyl substances (PFASs), which are known as a “super set” of chemical tracers that include more than ninety related chemicals. The comprehensive monitoring of PFASs is necessary to develop a reliable understanding of environmental kinetics related to these pollutants. However, the extent of atmospheric pollution by PFASs is still unclear because their distribution and sources are not fully understood. Hence, a reliable analytical method for precisely measuring the levels of PFASs in particulate matter is needed. In this study, in order to investigate the levels of PFASs in atmospheric particles including PM2.5, the use of new sampling equipment was evaluated by obtaining multiple samples of air from a stable meeting room environment. Meanwhile, by simultaneously obtaining samples from a roadside environment, the characteristics of PFASs from two different types of air samples were compared.


POPs PFASs Particulate aerosol PM2.5

Related Article

Improved Photocatalytic Air Cleaner with Decomposition of Aldehyde and Aerosol-Associated Influenza Virus Infectivity in Indoor Air

Kimiyasu Shiraki , Hiroshi Yamada, Yoshihiro Yoshida, Ayumu Ohno, Teruo Watanabe, Takafumi Watanabe, Hiroyuki Watanabe, Hidemitsu Watanabe, Masao Yamaguchi, Fumio Tokuoka, Shigeatsu Hashimoto, Masakazu Kawamura, Norihisa Adachi
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.06.0220

Size Distribution of Inorganic Elements in Bottom Ashes from Seven Types of Bio-Fuels across Beijing-Tianjin-Hebei Region, China

Zhiyong Li , Huiqiao Ma, Lin Fan, Peng Zhao, Lei Wang, Yunjun Jiang, Caixiu An, Aiqin Liu, Zishu Hu, Hui Jin
Volume: 17 | Issue: 10 | Pages: 2450-2462
DOI: 10.4209/aaqr.2017.08.0296

Seasonal Trends of Atmospheric PAHs in Five Asian Megacities and Source Detection Using Suitable Biomarkers

Mahua Saha, Dusmant Maharana, Rina Kurumisawa, Hideshige Takada , Bee Geok Yeo, Andrea C. Rodrigues, Badal Bhattacharya, Hidetoshi Kumata, Tomoaki Okuda, Kebin He, Yongliang Ma, Fumiyuki Nakajima, Mohamad Pauzi Zakaria, Duong Hoang Giang, Pham Hung Viet
Volume: 17 | Issue: 9 | Pages: 2247-2262
DOI: 10.4209/aaqr.2017.05.0163
PDF | Supplemental material