Articles online

Comparison of Oxidative Abilities of PM2.5 Collected at Traffic and Residential Sites in Japan. Contribution of Transition Metals and Primary and Secondary Aerosols

Category: Air Pollution and Health Effects

Volume: 17 | Issue: 2 | Pages: 574-587
DOI: 10.4209/aaqr.2016.07.0291
PDF | RIS | BibTeX

Yuji Fujitani , Akiko Furuyama, Kiyoshi Tanabe, Seishiro Hirano

  • National Institute for Environmental Studies, Tsukuba 305-8506, Japan


Oxidative ability of PM2.5 at traffic and residential sites in Japan were conducted.
That ability of PM2.5 was higher than particles of diesel and gasoline vehicles.
Also, that ability was higher than various precursors of secondary organic aerosols.
Cu, Fe, Ni, and Mn contributed over 80% of oxidative ability of the PM2.5.
The contribution of these metals was particularly high at the traffic site.


Filter environmental samples of PM2.5 were collected at a traffic intersection in Kawasaki, Japan, and at a residential site (Tsukuba, Japan) in summer and winter, and the chemical compositions of the samples and their oxidative abilities in the dithiothreitol (DTT) assay were determined. Laboratory-generated aerosols (diesel exhaust particles [DEPs], gasoline direct injection spark ignition particles, and secondary organic aerosols [SOAs] generated from various precursors) were also investigated. To assess the effects of transition metals in the filter samples, we also conducted DTT assays on solutions of metal compounds similarly to the filter samples. In addition, the samples were pretreated with chelating reagents to mask the effects of transition metals. The DTT consumption average values for the filter samples collected at the traffic site were 53 and 50 pmol min–1 µg–1 in summer and winter, respectively, and these values were 1.3 and 1.1 times the corresponding values at the residential site and were also higher than the values for the laboratory-generated aerosols. Transition metals (Cu, Fe, Ni, and Mn) in the environmental samples were considered to be major contributors to DTT consumption (more than 80%). After removal of the effect of these transition metals with the chelating reagents, the oxidative abilities of the environmental samples were correlated with the amounts of organic carbon, water-soluble organic carbon, and organic acids and were weakly correlated with the amounts of elemental carbon and inorganic ions. We also found that the oxidative abilities based on the amount of organic carbon after removal of the effects of transition metals for DEPs, photochemically generated SOAs, and environmental samples except in the case of the traffic site in summer were compatible.


Dithiothreitol assay Oxidative activity Traffic intersection Primary aerosol Secondary organic aerosol

Related Article

Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons and n-Alkanes in PM2.5 in Xiame

Ningning Zhang , Junji Cao, Lijuan Li, Steven Sai Hang Ho, Qiyuan Wang, Chongshu Zhu, Linlin Wang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0493

Health Risk of Ambient PM10-Bound PAHs at Bus Stops in Spring and Autumn in Tianjin, China

Taosheng Jin , Miao Han, Kun Han, Xuemei Fu, Limin Xu, Xiaohong Xu
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0461

Chemical Characterization of PM1-2.5 and its Associations with PM1, PM2.5-10 and Meteorology in Urban and Suburban Environments

Jana Kozákovác , Cecilia Leoni, Miroslav Klán, Jan Hovorka, Martin Racek, Martin Koštejn, Jakub Ondráček, Pavel Moravec, Jaroslav Schwarz

Intra-Urban Levels, Spatial Variability, Possible Sources and Health Risks of PM2.5 Bound Phthalate Esters in Xi’an

Jingzhi Wang, Zhibao Dong, Xiaoping Li, Meiling Gao, Steven Sai Hang Ho, Gehui Wang, Shun Xiao, Junji Cao
Volume: 18 | Issue: 2 | Pages: 485-496
DOI: 10.4209/aaqr.2017.09.0333
PDF | Supplemental material