Articles online

Characteristics of Atmospheric PM2.5 in a Densely Populated City with Multi-Emission Sources

Category: Urban Air Quality

Volume: 16 | Issue: 9 | Pages: 2145-2158
DOI: 10.4209/aaqr.2016.06.0269

Export Citation:  RIS | BibTeX

To cite this article:
Tseng, C.Y., Lin, S.L., Mwangi, J.K., Yuan, C.S. and Wu, Y.L. (2016). Characteristics of Atmospheric PM2.5 in a Densely Populated City with Multi-Emission Sources. Aerosol Air Qual. Res. 16: 2145-2158. doi: 10.4209/aaqr.2016.06.0269.

Chong-Yu Tseng1, Sheng-Lun Lin 2,3, John Kennedy Mwangi1, Chung-Shin Yuan4, Yee-Lin Wu1

  • 1 Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
  • 2 Department of Civil Engineering and Geomatics, Cheng Shiu University, Kaohsiung City 83347, Taiwan
  • 3 Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung City 83347, Taiwan
  • 4 Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung City 80424, Taiwan


Seasonal chemical compositions of PM2.5 in a dense city were investigated.
Secondary aerosol contributed over 50% in the seasons with high PM2.5 level.
Traffic emission is the most dominant but not only source in a dense city.
NOx control might be the key for reducing PM2.5 in this populated city.


Fine particulate matters (PM2.5) have been identified as one of the major air pollutants in urban areas, which are responsible for the deterioration of the atmospheric air quality as well as adverse effects on public health. In this study, the mass concentration, water-soluble ionic component, trace metal component, carbon component and modeling the contribution source for PM2.5 was characterized for Chiayi City, which has high population density and surrounded by agricultural area. The lowest PM2.5 mass concentrations were registered in the summer (9–22 µg m–3), while for the spring, autumn, and winter were well above the healthy level suggested by World Health Organization (WHO). For all seasons, the dominants were the sulfate (SO42–), nitrate (NO3) and followed closely by ammonium (NH4+). Those secondary aerosols were transformed from SO2 and NO2 into particulate NO3 and SO42– during spring, autumn and winter. Lower carbon mass concentrations were observed for summer (2.03–2.49 µg m–3) corresponding to the highest carbon content in PM2.5 mass concentrations in terms of percentages (average 18.1%). Using the Chemical Mass Balance receptor model, the secondary nitrate (NO3), primary traffic source, secondary sulfate (SO42–), re-suspending soil particle, and petrochemical industry were identified as the major sources of PM2.5 in Chiayi City. Consequently, the PM2.5 contributions were complicated in a small but various seasons and geological distributing area. The air quality control strategies were thus seasonal and periodical dependent.


PM2.5 Chemical composition Chemical mass balance Source apportionment Emission characterization

Related Article

Chemical Characteristics and Source Apportionment of PM2.5 during Winter in the Southern Part of Urumqi, China

Yusan Turap, Suwubinuer Rekefu, Guo Wang, Dilinuer Talifu , Bo Gao , Tuergong Aierken, Shen Hao, Xinming Wang, Yalkunjan Tursun, Mailikezhati Maihemuti, Ailijiang Nuerla

Particle Mass Concentrations and Number Size Distributions in 40 Homes in Germany: Indoor-to-outdoor Relationships, Diurnal and Seasonal Variation

Jiangyue Zhao, Wolfram Birmili, Birgit Wehner, Anja Daniels, Kay Weinhold, Lina Wang, Maik Merkel, Simonas Kecorius, Thomas Tuch, Ulrich Franck, Tareq Hussein, Alfred Wiedensohler
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.09.0444

Life Cycle Impact Assessment of Airborne Metal Pollution near Selected Iron and Steelmaking Industrial Areas in China

Xiaoteng Zhou , Vladimir Strezov, Yijiao Jiang, Xiaoxia Yang, Jing He, Tim Evans
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.10.0552