OPEN ACCESS

Articles online

Study of Local and Regional Influence on PM2.5 Concentration during Odd-Even Rule in Delhi Using Causal Analysis

Category: Urban Air Quality

Volume: 17 | Issue: 5 | Pages: 1190-1203
DOI: 10.4209/aaqr.2016.06.0267
PDF | RIS | BibTeX

Asha B. Chelani

  • Air Pollution Control Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India

Highlights

Analysis of PM2.5 concentration during odd-even rule in Delhi.
Similarity and causality analysis for regional influences is suggested.
Causality analysis using nearest neighbour method is proposed.
PM2.5 in Delhi has similar temporal behaviour with neighbouring sites in SE and W-SW.
Control policies for PM2.5 in Delhi should be based on local and regional influences.


Abstract

PM2.5 concentration observed during odd-even rule in Delhi is analysed for assessing its effectiveness in curbing the levels. The local and regional influence is analysed by using similarity and causality analysis. Causality analysis is usually carried out by using nonlinear dynamical technique which predicts one variable using another. In this study a simple approach is presented based on nearest neighbour method. It is observed that PM2.5 in Delhi has regional influence in addition to local sources. Although the effectiveness of odd-even rule is not observed in curbing the PM2.5 levels, it is suggested that extended implementation of the rule may provide more insight to the impact. Similarity analysis suggested that PM2.5 concentrations in Delhi have somewhat similar temporal behaviour with neighbouring locations in the southeast (SE) and west (W)-southwest (SW) sector. The control policies in Delhi need to be adopted keeping in mind the local and regional influences on PM2.5 levels in the area.

Keywords

Causal analysis Similarity analysis Nearest neighbour Local and regional influences Odd-even rule


Related Article

Vertical Ozone Concentration Profiles in the Arabian Gulf Region during Summer and Winter: Sensitivity of WRF-Chem to Planetary Boundary Layer Schemes

Christos Fountoukis , Mohammed A. Ayoub, Luis Ackermann, Daniel Perez-Astudillo, Dunia Bachour, Ivan Gladich, Ross D. Hoehn

On the Morphology and Composition of Particulate Matter in an Urban Environment

Bahadar Bahadar Zeb, Khan Khan Alam , Armin Armin Sorooshian, Thomas Blaschke, Ifthikhar Ahmad, Imran Shahid
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.09.0340
PDF

Concentration of Ultrafine Particles near Roadways in An Urban Area in Chicago, Illinois

Sheng Xiang, Zhice Hu, Wenjuan Zhai, Dongqi Wen, Kenneth E. Noll
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.09.0347
PDF

Spatial Characterization of Black Carbon Mass Concentration in the Atmosphere of a Southeast Asian Megacity: An Air Quality Case Study for Metro Manila, Philippines

Honey Dawn Alas , Thomas Müller, Wolfram Birmili, Simonas Kecorius, Maria Obiminda Cambaliza, James Bernard B. Simpas, Mylene Cayetano, Kay Weinhold, Edgar Vallar, Maria Cecilia Galvez, Alfred Wiedensohler
;