Articles online

Significance of PM2.5 Air Quality at the Indian Capital

Category: Air Pollution and Health Effects

Volume: 17 | Issue: 2 | Pages: 588-597
DOI: 10.4209/aaqr.2016.06.0262
PDF | Supplemental material | RIS | BibTeX

Shovan Kumar Sahu, Sri Harsha Kota

  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India


During 2011 to 2014, PM2.5 exceeded INAAQS during 85% of the days.
PM2.5 was the most dominant pollutant in all days of the week according to AQI.
PM2.5 was dominant during 95% of the winter and 68% of monsoon days.
Excessive risk due to PM2.5 was 0.57 per 1 µg m–3.
41 lives /100000 will be saved by meeting WHO standards for PM2.5.


In New Delhi, the capital city of India, concentrations of regulated air pollutants often exceed the Indian national ambient air quality standards (INAAQS). As the sources of these pollutants differ, it is of utmost priority to understand the most dangerous air pollutant to formulate better control strategies in the city. In this study, regulated air pollutant concentrations in New Delhi during 2011 to 2014 were collected. Compared to other pollutants, PM2.5 concentrations exceeded the INAAQS quite often. While PM2.5 exceeded INAAQS during 85% of the days, NO2, O3, CO and SO2 exceeded only on 37, 14, 11 and 0% of the days, respectively. Using air quality index approach, the most dominant pollutant was identified as PM2.5, for 75 to 90% of the days. However, a seasonal variation in the percentage dominance of PM2.5 was observed. For example, PM2.5 was dominant during 95% of the winter and 68% of monsoon days. In addition to absolute concentrations, pollutants can also be ranked by studying their associated short term mortality impacts. However, such studies are rare in India. For the first time, the short term impact of PM2.5 concentrations on non-disease specific mortality in New Delhi was assessed using Poisson regression models. Results indicated that the excessive risk associated with PM2.5 estimated was 0.57, which was higher than the other regulated pollutants. This indicates a projected 6.2 and 6.5% decrease in mortality by meeting the PM2.5 Indian standards and WHO set limits, respectively.


Air quality index New Delhi PM2.5 Health impact assessment

Related Article

Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons and n-Alkanes in PM2.5 in Xiame

Ningning Zhang , Junji Cao, Lijuan Li, Steven Sai Hang Ho, Qiyuan Wang, Chongshu Zhu, Linlin Wang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0493

Health Risk of Ambient PM10-Bound PAHs at Bus Stops in Spring and Autumn in Tianjin, China

Taosheng Jin , Miao Han, Kun Han, Xuemei Fu, Limin Xu, Xiaohong Xu
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0461

Chemical Characterization of PM1-2.5 and its Associations with PM1, PM2.5-10 and Meteorology in Urban and Suburban Environments

Jana Kozákovác , Cecilia Leoni, Miroslav Klán, Jan Hovorka, Martin Racek, Martin Koštejn, Jakub Ondráček, Pavel Moravec, Jaroslav Schwarz

Intra-Urban Levels, Spatial Variability, Possible Sources and Health Risks of PM2.5 Bound Phthalate Esters in Xi’an

Jingzhi Wang, Zhibao Dong, Xiaoping Li, Meiling Gao, Steven Sai Hang Ho, Gehui Wang, Shun Xiao, Junji Cao
Volume: 18 | Issue: 2 | Pages: 485-496
DOI: 10.4209/aaqr.2017.09.0333
PDF | Supplemental material