OPEN ACCESS

Articles online

Ambient BTX Observation nearby Main Roads In Hefei during Summer Time

Category: Urban Air Quality

Volume: 17 | Issue: 4 | Pages: 933-943
DOI: 10.4209/aaqr.2016.05.0213
PDF

Export Citation:  RIS | BibTeX

To cite this article:
Lu, X., Qin, M., Xie, P., Shen, L., Duan, J., Liang, S., Fang, W., Liu, J. and Liu, W. (2017). Ambient BTX Observation nearby Main Roads In Hefei during Summer Time. Aerosol Air Qual. Res. 17: 933-943. doi: 10.4209/aaqr.2016.05.0213.

Xue Lu1,2, Min Qin 1, Pinhua Xie 1,3, Lanlan Shen1, Jun Duan1, Shuaixi Liang1,2, Wu Fang1, Jianguo Liu1,3, Wenqing Liu1,3

  • 1 Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
  • 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
  • 3 School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230027, China

Highlights

BTX nearby Hefei main road are high at night and mainly from local traffic emissions.
Afternoon phenol is mainly from benzene oxidized by OH radicals.
Volatilization of solvent accounts for 38% of daytime toluene pollution.
Street traffic emissions visibly effects roadside pollution levels.


Abstract

In order to study the sources, chemical evolutions and impacts on air quality of BTX (benzene, toluene, xylene, etc.) in a typical unban area, a field campaign was conducted with our homemade differential optical absorption spectroscopy (DOAS) instrument in May 2014 at the North part of First Ring Road of Hefei. During the entire measurement, BTX showed high levels in the morning and at night except toluene and phenol. The observed average of benzene is 5.11 µg m–3, toluene is 19.15 µg m–3, m-xylene is 14.74 µg m–3, p-xylene is 1.47 µg m–3, phenol is 0.67 µg m–3, which are at a low pollution level compared with other cities. The ratios of toluene to benzene range from 1.6 to 8 and the correlation coefficient R of benzene and CO is about 0.88, suggesting the main source of local BTX is traffic emissions. Phenol shows negative correlation with benzene (R = 0.87) in the afternoon, which means that the oxidization of benzene by OH radicals is an important source of phenol. The relations with meteorological conditions were also disscussed, indicating the contribution of solvent evaporation from nearby point sources to toluene in the afternoon. Wind speed is another important factor to the concentration distribution of BTX. The correlation coefficient R of benzene and PM2.5 is 0.83, inferring the influence of street traffic emission on roadside pollution levels.

Keywords

BTX DOAS Traffic emissions Meteorological conditions


Related Article

Particle Mass Concentrations and Number Size Distributions in 40 Homes in Germany: Indoor-to-outdoor Relationships, Diurnal and Seasonal Variation

Jiangyue Zhao, Wolfram Birmili, Birgit Wehner, Anja Daniels, Kay Weinhold, Lina Wang, Maik Merkel, Simonas Kecorius, Thomas Tuch, Ulrich Franck, Tareq Hussein, Alfred Wiedensohler
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.09.0444
PDF

Life Cycle Impact Assessment of Airborne Metal Pollution near Selected Iron and Steelmaking Industrial Areas in China

Xiaoteng Zhou , Vladimir Strezov, Yijiao Jiang, Xiaoxia Yang, Jing He, Tim Evans
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.10.0552
PDF
;