Articles online

Airborne Bacterial Communities of PM2.5 in Beijing-Tianjin-Hebei Megalopolis, China as Revealed By Illumina MiSeq Sequencing: A Case Study

Category: Bioaerosols

Volume: 17 | Issue: 3 | Pages: 788-798
DOI: 10.4209/aaqr.2016.02.0087
PDF | Supplemental material

Export Citation:  RIS | BibTeX

Jing-Feng Gao , Xiao-Yan Fan, Hong-Yu Li, Kai-Ling Pan

  • College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China


Bacteria of PM2.5 contained 1054 OTUs with mean number of 1.19 × 105 cell m–3 air.
Proteobacteria, Cyanobacteria and Actinobacteria were the three dominant bacterial phyla.
18 potential pathogens species (3.61% of total sequences) were detected in PM2.5.
Plants and soil are probably the main sources of bacteria of PM2.5 in BTH.
Environmental factors explained 81.83% of the variations in bacterial communities.


Bacteria are ubiquitous and abundant in the atmosphere and some of them are potential pathogens known to cause diseases or allergies in humans. However, the quantities and compositions of total airborne bacterial community and their relationships with environmental factors remain poorly investigated. Here, a case study of the total airborne bacteria of PM2.5 collected at six cities in Beijing-Tianjin-Hebei (BTH) megalopolis, China were profiled using quantitative polymerase chain reaction (qPCR) and Illumina MiSeq (PE300) sequencing. qPCR results showed the high abundance of total airborne bacteria of PM2.5 in BTH, ranging from 4.82 × 104 ± 1.58 × 103 to 2.64 × 105 ± 9.63 × 104 cell m–3 air, and averaged 1.19 × 105 cell m–3 air. The six PM2.5 samples were classified into three groups. Proteobacteria, Cyanobacteria, Actinobacteria and Firmicutes were the four dominant phyla of PM2.5. 18 common potential pathogens with extremely low percentage (3.61%) were observed, which were dominated by Enterococcus faecium and Escherichia coli. Plants and soil are probably the main sources of bacteria in PM2.5, as suggested by the high percentages of Chloroplast, plant-associated bacteria (e.g., Rhizobiales and Sphingomonadales) and soil-inhabiting bacteria (e.g., Burkholderiales and Pseudomonadales). Variation partitioning analysis (VPA) indicated that the atmospheric pollutants explained the most of the variation (31.90%) in community structure of PM2.5, followed by meteorological conditions (15.73%) and the chemical compositions of PM2.5 (11.32%). The case study furthers our understanding of the diversity and composition of airborne bacterial communities of PM2.5 in BTH, and also identified the main factors shaping the bacterial communities.


PM2.5 Illumina MiSeq sequencing Airborne bacterial communities Potential pathogens Beijing-Tianjin-Hebei megalopolis

Related Article

Bioaerosol Concentrations and Size Distributions during the Autumn and Winter Seasons in an Industrial City of Central China

Ting Liu, L.-W. Antony Chen , Mi Zhang, John G. Watson, Judith C. Chow, Junji Cao, Hongyu Chen, Wei Wang, Jiaquan Zhang, Changlin Zhan, Hongxia Liu, Jingru Zheng, Naiwen Chen, Ruizhen Yao, Wensheng Xiao