Articles online

Performance of a Robotic Weighing System and Quality Practices for Gravimetric Mass Measurements

Category: Air Pollution and Health Effects

Volume: 16 | Issue: 10 | Pages: 2438-2451
DOI: 10.4209/aaqr.2015.12.0670
PDF | Supplemental material

Export Citation:  RIS | BibTeX

A. Paige Presler-Jur , Prakash Doraiswamy, Frank X. Weber, Okisha Hammond, Lisa C. Greene, R.K.M. Jayanty

  • RTI International, NC 27709, USA


Robotic weighing shows greater precision and static control than manual weighing.
Electrostatic charges can be difficult to detect with duplicate filter weighing.
Tracking of Lab Blanks over time is the best way to identify static impacts.
No trace metal contamination found in robotic system, but may need annual checks.


Gravimetric analysis is an essential baseline measurement for air quality monitoring networks to monitor particulate matter and to track adherence to the National Ambient Air Quality Standards. The Clean Air Act requires the state and local agencies to monitor and report particulate matter concentrations as a part of their air monitoring requirements. High-throughput gravimetry laboratories need to be capable of weighing thousands of filter-based samples each month while maintaining strict quality control requirements set by the Federal Reference Method for the determination of particulate matter in ambient air.

Here, we present an evaluation of the performance of a robotic weighing system and review quality control measures applicable to gravimetric mass measurements. Results from this study show robotic weighing is better able to control static effects common to manual weighing. Electrostatic charges are increased with each human movement during the manual weighing process and, as indicated here, can occur suddenly and be difficult to detect. This study provides insights into the ability of robotic weighing to mitigate this effect and suggests new quality practices to detect and track the static effect.


Gravimetric mass PM Static Quality Assurance Robotic weighing system

Related Article

Analysis of PAHs Associated with PM10 and PM2.5 from Different Districts in Nanjing

Xiansheng Liu, J├╝rgen Schnelle-Kreis, Brigitte Schloter-Hai, Lili Ma , Pengfei Tai, Xin Cao, Cencen Yu, Thomas Adam, Ralf Zimmermann

Traffic Condition and Emission Factor from Diesel Vehicles within the Kathmandu Valley

Enna Mool, Prakash V. Bhave, Nita Khanal, Rejina M. Byanju, Sagar Adhikari, Bhupendra Das, Siva P. Puppala