OPEN ACCESS

Articles online

Personal Exposure and Dose of Inhaled Ambient Particulate Matter Bound Metals in Five European Cities

Category: Air Pollution and Health Effects

Volume: 16 | Issue: 6 | Pages: 1452-1463
DOI: 10.4209/aaqr.2015.09.0536
PDF

Export Citation:  RIS | BibTeX

Eleni Mammi-Galani, Eleftheria Chalvatzaki, Mihalis Lazaridis

  • Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, 73100 Chania, Crete, Greece

Highlights

Quantification of internal dose of particulate matter-bound metals.
A respiratory tract model and a pharmacokinetic model were used.
The study focus on residents of five European cities.


Abstract

The objective of the current study is the determination of the personal exposure and dose of ambient particulate matter-bound metals in human tissues at five European cities. The accumulation in human body of lead (Pb), arsenic (As) and cadmium (Cd), in five European cities (Athens, Seville, Rome, Frankfurt and Zabrze) was calculated using an exposure and dose assessment model, ExDoM, and a pharmacokinetic model, PBPK. The study subjects are adult Caucasian non-smoker males. It was calculated that the highest dose of particulate matter is received from a resident of Seville, due to the higher ambient PM10 levels in the city compared to the other sites. First, the current study showed that the European Union thresholds of particle-bound Pb, Cd and As concentrations were not exceeded in the cities under study. As regard the dose of Pb and As the higher dose is calculated for Athens and Seville, respectively. The highest dose of Cd is found at Zabrze, due to the high industrial activity in the city. It was calculated that after one day of exposure, the highest accumulation of Pb occurred in blood, muscles and bones. Furthermore, the highest deposition of Cd occurred in the lungs and intestines and for As in the lung and muscles. The heavy metals intake, calculated in this study, was very low in comparison with the recommended WHO levels for heavy metals intake from all types of exposure (inhalation, ingestion).

Keywords

Human exposure Human metal dose Exposure modelling PBPK model Respiratory tract model


Related Article

Source Identification on High PM2.5 Days Using SEM/EDS, XRF, Raman, and Windblown Dust Modeling

Jeff Wagner , Zhong-Min Wang, Sutapa Ghosal, Stephen Wall
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.05.0276
PDF

Analysis of PAHs Associated with PM10 and PM2.5 from Different Districts in Nanjing

Xiansheng Liu, J├╝rgen Schnelle-Kreis, Brigitte Schloter-Hai, Lili Ma , Pengfei Tai, Xin Cao, Cencen Yu, Thomas Adam, Ralf Zimmermann

Traffic Condition and Emission Factor from Diesel Vehicles within the Kathmandu Valley

Enna Mool, Prakash V. Bhave, Nita Khanal, Rejina M. Byanju, Sagar Adhikari, Bhupendra Das, Siva P. Puppala

Comparative Study of PAHs in PM1 and PM2.5 at a Background Site in the North China Plain

Yan Zhang, Lingxiao Yang , Ying Gao, Jianmin Chen, Yanyan Li, Pan Jiang, Junmei Zhang, Hao Yu, Wenxing Wang
;