OPEN ACCESS

Articles online

Impact of Smoke Intensity on Size-Resolved Aerosol Composition and Microstructure during the Biomass Burning Season in Northwest Vietnam

Category: Aerosol and Atmospheric Chemistry

Volume: 16 | Issue: 11 | Pages: 2635-2654
DOI: 10.4209/aaqr.2015.07.0463
PDF | RIS | BibTeX

Olga B. Popovicheva 1, Guenter Engling2,3, Evangelia Diapouli4, Dikaia Saraga4, Natalia M. Persiantseva1, Mikhail A. Timofeev1, Elena D. Kireeva1, Natalia K. Shonija1, Sheng-Han Chen2, Dac L. Nguyen5, Konstantinos Eleftheriadis4, Chung-Te Lee6

  • 1 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow1 19991, Russia
  • 2 Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
  • 3 Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA
  • 4 Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. “Demokritos”, Athens 15310, Greece
  • 5 Institute of Geophysics - Vietnam Academy of Science and Technology, Ha Noi, Vietnam
  • 6 Graduate Institute of Environmental Engineering, National Central University, Chung-Li 32001, Taiwan

Highlights

Near-source field burning and cooking emissions were characterized.

Composition and microstructure of size-resolved aerosol was analyzed with various techniques.

PM2.5 mass concentrations exceeded WHO standards due to high smoke levels.

High OC/EC ratios indicated fires predominantly in smoldering phase.

Substantial impact of biomass smoke emissions on ambient aerosol burden was evident.


Abstract

Aerosol particles significantly impact the regional environment, including climate change, specifically in periods of extensive biomass burning. The major agricultural and domestic combustion emission sources were assessed in near-source and ambient monitoring campaigns in northwestern Vietnam during the dry season. The composition and microstructure of on-field burning and cooking emissions were analyzed with a variety of techniques. A wide range of observed PM2.5 mass concentrations was categorized according to the smoke level, supported by the evolution of carbon fractions (OC and EC) as well as ionic species and molecular tracers (K+, levoglucosan, and mannosan). The OC/EC and individual organic compound ratios on days with high smoke levels indicate smoldering combustion of softwood and other local biomass species, impacting aerosol composition at the regional level. Acid and non-acid carbonyls, carboxylates, and aliphatic carbon functionalities in the PM2.5 size fraction evolved with increasing smoke intensity, together with carbonates in coarse (PM1–2.5 and PM2.5–10) size fractions, indicating a large impact of smoke emissions and soil lifted up by the intense fires. Biomass burning influence increased the abundance of soot and organic particles in the submicron fraction from 12% at low to 59% and 68% at moderate and high smoke levels, respectively. Smoke micromarkers of local biomass burning source emissions determined the microstructure of ambient aerosols representative for northern Southeast Asia.

Keywords

Biomass combustion Smoke emission Near-source sampling Size segregation Chemical composition Morphology


Related Article

Ozone and Secondary Organic Aerosol Formation of Toluene/NOx Irradiations under Complex Pollution Scenarios

Linghong Chen, Kaiji Bao, Kangwei Li, Biao Lv, Zhier Bao, Chao Lin, Xuecheng Wu, Chenghang Zheng , Xiang Gao, Kefa Cen
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.05.0179
PDF

Chemical Composition of Diesel/Biodiesel Particulate Exhaust by FTIR Spectroscopy and Mass Spectrometry: Impact of Fuel and Driving Cycle

Olga B. Popovicheva , Cornelia Irimiea, Yvain Carpentier, Ismael K. Ortega, Elena D. Kireeva, Natalia K. Shonija, Jaroslav Schwarz, Michal Vojtíšek-Lom, Cristian Focsa
;