OPEN ACCESS

Articles online

Modulation in Direct Radiative Forcing Caused by Wind Generated Sea-Salt Aerosols

Category: Optical/Radiative Properties and Remote Sensing

Volume: 16 | Issue: 11 | Pages: 2869-2883
DOI: 10.4209/aaqr.2015.07.0462
PDF | RIS | BibTeX

Nishi Srivastava 1, S.K. Satheesh2,3

  • 1 Birla Institute of Technology, Mesra, Ranchi-835215, India
  • 2 Centre for Atmospheric and Oceanic Science, Indian Institute of Science, Bangalore-560012, India
  • 3 Divecha Centre for Climate Change, Indian Institute of Science, Bangalore-560012, India

Highlights

Developed a robust τ-wind relation by exploring a large spatial and temporal span.
Studied latitudinal variation of τ0 and b for spatial heterogeneity in sea-salt.
DRF has been estimated in both shortwave and long-wave region.
Longwave forcing nullifies the shortwave forcing partially due to opposite signs.
This indicates notable contribution of coarse sea-salt aerosol in LWF over AS.


Abstract

Sea-salt aerosols, prominent natural aerosols over the ocean, play a vital role in direct and indirect radiative forcing. Since surface winds are the prime cause of sea-salt generation, we have developed an empirical relationship between aerosol optical depth (AOD) and sea-surface winds over the study region (60–70°E; 40°S–20°N). The latitudinal variation of background aerosol optical depth (τ0) and the wind index (b) are estimated as they are essential inputs for the estimation of the spatial variation of sea-salt aerosols and are used over the Arabian Sea (AS) to generate spatial heterogeneity of sea-salt aerosols. The latitudinal variation of τ0 and b show a nearly exponential and linear increase, respectively, as we moved towards the north. We used an empirical-cum-model approach to construct an aerosol system to reproduce the observed AOD and aerosol optical properties. Utilizing this information as input to a radiative transfer model, we worked out direct radiative forcing (DRF) over the study region in the short wave (0.2–4 µm) and long wave (8–14 µm) region at the surface, top of the atmosphere (TOA) and in the atmosphere. Short wave cooling at the surface, TOA and heating in the atmosphere are estimated as 40 W m–2, 32 W m–2 and 8 W m–2, respectively. Long wave heating due to the sea-salt aerosols estimated at the surface, TOA and in the atmosphere is about 9 W m–2, 6 W m–2 and 15 W m–2 respectively. Long wave forcing (LWF) partly counterbalances the effect of short wave forcing (SWF) and the cooling at the surface and at TOA. The highest value of such an offset at the surface was observed over the AS (~23%) and that at TOA was ~19%, obviously at high wind conditions. This implies that over the AS sea-salt aerosols (in coarse mode) contribute significantly to LWF compared to other adjacent oceanic regions.

Keywords

Sea salt aerosol Radiative forcing Aerosol optical depth


Related Article

Particle Size Distribution of Soot from a Laminar/Diffusion Flame

Jian Wu, Linghong Chen , Jianwu Zhou, Xuecheng Wu, Xiang Gao, Gérard Gréhan, Kefa Cen
Volume: 17 | Issue: 8 | Pages: 2095-2109
DOI: 10.4209/aaqr.2017.06.0216
PDF

Dynamic Monitoring of the Strong Sandstorm Migration in Northern and Northwestern China via Satellite Data

Qinghua Su, Lin Sun , Yikun Yang, Xueying Zhou, Ruibo Li, Shangfeng Jia
Article In Press
DOI: 10.4209/aaqr.2016.12.0600
PDF

An Improved Aerosol Optical Depth Map Based on Machine-Learning and MODIS Data: Development and Application in South America

Bethania L. Lanzaco, Luis E. Olcese , Gustavo G. Palancar, Beatriz M. Toselli
Volume: 17 | Issue: 6 | Pages: 1623-1636
DOI: 10.4209/aaqr.2016.11.0484
PDF
;