OPEN ACCESS

Articles online

Relationship between Aerosol Optical Depth and Particulate Matter over Singapore: Effects of Aerosol Vertical Distributions

Category: Optical/Radiative Properties and Remote Sensing

Volume: 16 | Issue: 11 | Pages: 2818-2830
DOI: 10.4209/aaqr.2015.07.0457
PDF | RIS | BibTeX

Boon Ning Chew 1, James R. Campbell2, Edward J. Hyer2, Santo V. Salinas1, Jeffrey S. Reid2, Ellsworth J. Welton3, Brent N. Holben4, Soo Chin Liew1

  • 1 Centre for Remote Imaging, Sensing and Processing, National University of Singapore, 119076, Singapore
  • 2 Naval Research Laboratory, Marine Meteorology Division, Monterey, CA 93943-5502, USA
  • 3 Micro-Pulse Lidar Network, Code 613.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
  • 4 Code 618, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Highlights

Aerosol scale height distribution over Singapore is observed to be bimodal.
Lidar-derived surface extinctions are well correlated with PM2.5 concentrations.
Observational AOD-PM2.5 correlations improve with aerosol scale height corrections.
Modeled AOD-PM2.5 correlation improves marginally with similar corrections.


Abstract

As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.5 µm (PM2.5) for air quality applications are investigated. When MPLNET-derived aerosol scale heights are applied to normalize AOD for comparison with surface PM2.5 data, the empirical relationships are shown to improve with an increased 11%, 10% and 5% in explained variances, for AERONET, MODIS and NAAPS respectively. The ratios of root mean square errors to standard deviations for the relationships also show corresponding improvements of 8%, 6% and 2%. Aerosol scale heights are observed to be bimodal with a mode below and another above the strongly-capped/deep near-surface layer (SCD; 0–1.35 km). Aerosol extinctions within the SCD layer are well-correlated with surface PM2.5 concentrations, possibly due to strong vertical mixing in the region.

Keywords

Air quality Air pollution Aerosol optical depth


Related Article

Aerosol Optical Depth, Ozone and Water Vapor Measurements over Gadanki, A Tropical Station in Peninsular India

A. K. Srivastava , P. C. S. Devara, Y. Jaya Rao, Y. Bhavanikumar, D. N. Rao
Volume: 8 | Issue: 4 | Pages: 459-476
DOI: 10.4209/aaqr.2008.05.0015
PDF

Modulation in Direct Radiative Forcing Caused by Wind Generated Sea-Salt Aerosols

Nishi Srivastava , S.K. Satheesh
Volume: 16 | Issue: 11 | Pages: 2869-2883
DOI: 10.4209/aaqr.2015.07.0462
PDF

Particle Size Distribution of Soot from a Laminar/Diffusion Flame

Jian Wu, Linghong Chen , Jianwu Zhou, Xuecheng Wu, Xiang Gao, Gérard Gréhan, Kefa Cen
Volume: 17 | Issue: 8 | Pages: 2095-2109
DOI: 10.4209/aaqr.2017.06.0216
PDF

Dynamic Monitoring of the Strong Sandstorm Migration in Northern and Northwestern China via Satellite Data

Qinghua Su, Lin Sun , Yikun Yang, Xueying Zhou, Ruibo Li, Shangfeng Jia
Article In Press
DOI: 10.4209/aaqr.2016.12.0600
PDF
;