Articles online

Dust Induced Changes in Ice Cloud and Cloud Radiative Forcing over a High Altitude Site

Category: Aerosol and Atmospheric Chemistry

Volume: 16 | Issue: 8 | Pages: 1820-1831
DOI: 10.4209/aaqr.2015.05.0325
PDF | Supplemental material

Export Citation:  RIS | BibTeX

Piyushkumar N. Patel , Raj Kumar

  • Space Applications Centre, Indian Space Research Organization, Ahmedabad-380015, India


Impacts of dust storms on aerosol and cloud properties were studied over high altitude site.
Multi-satellite and model simulated data were used in this study.
Regional cloud radiative forcing at TOA were estimated during dust period.


Aerosol-cloud interaction is the subject of considerable scientific research, due to the importance of clouds in controlling climate. In the present study, three years (2011–2013) satellite observations are used to investigate the aerosol indirect effect (AIE) over Dehradun. The low values of Angstrom exponent (α) during March–July are attributed to the loading of dust-like coarse particles in the atmosphere, whereas the analysis of aerosol type and Spectral Radiation Transport Model for Aerosol species (SPRINTARS) simulated aerosol species variation supports the fact. Moderate Resolution Imaging Spectroradiometer (MODIS) derived AOD data are associated to the cloud product to examine the dust impact on properties of liquid cloud and ice cloud. The positive values of aerosol cloud interaction effect (ACI) for ice cloud during pre-monsoon (March–May) and monsoon (June–August) seasons reveal the significant impact of dust on ice clouds over Dehradun, which is maximum during May (~0.24 ± 0.05). The present study shows that ice cloud effective radius (ICER) decrease with AOD during dust period. The increase in ice water path (IWP) and ice cloud optical depth (ICOD) reveals the impact of dust on heterogeneous ice generation in low level clouds. However, there is no relation between dust and liquid water cloud during dust period. It is difficult to provide definite conclusions that the dust and cloud changes are driven by the same meteorological conditions. Cloud and the Earth’s Radiant Energy System (CERES) derived flux data are used to examine the associated changes in TOA cloud radiative forcing. The diminution in effective size of ice crystal due to aerosol first indirect effect traps more longwave radiation and reflects more solar radiation. Both first and second indirect effects enhance cloud cooling, whereas the dust induced cloud warming is mainly the result of the semi-direct effect.


Dust Ice cloud Cloud radiative forcing Aerosol indirect effect

Related Article

Elemental Composition, Morphology and Sources of Fine Particulates (PM2.5) in Hefei City, China

Huaqin Xue, Guijian Liu , Hong Zhang, Ruoyu Hu, Xin Wang
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.09.0341

Characteristics and Formation Mechanisms of Sulfate and Nitrate in Size-segregated Atmospheric Particles from Urban Guangzhou, China

Feng Jiang, Fengxian Liu, Qinhao Lin, Yuzhen Fu, Yuxiang Yang, Long Peng, Xiufeng Lian, Guohua Zhang , Xinhui Bi, Xinming Wang, Guoying Sheng

Characteristics of Air Pollutants and Greenhouse Gases at a Regional Background Station in Southwestern China

Linjun Cheng, Dongsheng Ji , Jun He, Liang Li, Li Du, Yang Cui, Hongliang Zhang, Luxi Zhou, Zhiqing Li, Yingxin Zhou, Shengyuan Miao, Zhengyu Gong, Yuesi Wang

Aerosol Pollution Characterization before Chinese New Year in Zhengzhou in 2014

Xiuli Wei , Huaqiao Gui, Jianguo Liu, Jie Zhang, Schwab James, Minguang Gao
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.06.0226