Articles online

Emission Profiles of PM10-Bound Polycyclic Aromatic Hydrocarbons from Biomass Burning Determined in Chamber for Assessment of Air Pollutants from Open Burning

Category: Air Toxics

Volume: 16 | Issue: 11 | Pages: 2716-2727
DOI: 10.4209/aaqr.2015.04.0278
PDF | RIS | BibTeX

Wan Wiriya1,2, Somporn Chantara 1,2, Sopittaporn Sillapapiromsuk1,3, Neng-Huei Lin1,4

  • 1 Environmental Science Program, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
  • 2 Environmental Chemistry Research Laboratory, Chemistry Department, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
  • 3 Environmental Science Program, Faculty of Science, Lampang Rajabhat University, Lampang 52100, Thailand
  • 4 Department of Atmospheric Science, National Central University, Chung-Li 32001, Taiwan


Rice straw, maize residue and leaf litter were burnt in a combustion chamber.
Emission factors (EFs) of PM10 and PAHs were obtained from biomass burning test.
EFs were used for estimation of pollutant emission from open burning.
Diagnostic ratios of PAHs were proposed for biomass burning source identification.


In order to estimate emission factors (EFs) of air pollutants, three types of biomass (rice straw, maize residue and leaf litter) were collected and burnt in a self-designed stainless steel chamber. The EFs of PM10 from biomass burning were leaf litter (1.22 ± 0.29 g kgdry–1) > rice straw (0.89 ± 0.25 g kgdry–1) > maize residue (0.59 ± 0.13 g kgdry–1), while those of PM10-bound polycyclic aromatic hydrocarbons (PAHs) were leaf litter (0.91 ± 0.28 mg kgdry–1) > maize residue (0.47 ± 0.11 mg kgdry–1) ~ rice straw (0.46 ± 0.21 mg kgdry–1). The results revealed that burning of forest leaf litter emitted higher amounts of particulate pollutants than the agricultural residue burning. New values of diagnostic ratios of some PAHs, including FLA/(FLA + PYR, BaA/(BaA + CHR) and IND/(IND + BPER), were proposed to identify biomass burning sources. Emission rates (ERs) of PM10 and PAHs from biomass burning in Chiang Mai, Thailand were estimated based on the EFs and burning areas recorded in the dry season of 2010 and 2011. The ERs of pollutants from forest burning were found to be much higher than those from agricultural field burning, mainly due to larger burnt areas in the forest. In 2010, PM10 was mainly emitted from the forest fire (2,250 tons), followed by crop burning (133 tons) and paddy field burning (66.9 tons). The same trend was found in 2011 but with much lower emission rates. The ERs of PAHs from biomass burning were 1,815 kg in 2010 and 416 kg in 2011. The ERs of PM10 and PAHs in 2011 were 77% decreased from those in 2010 due to unusually high precipitation in the dry season, causing relatively smaller burnt areas and lower pollutant emissions from open burning. It is expected that the results from this study will be significant information for regulatory actions of air quality management in the northern part of Thailand.


Aerosol chemistry Air pollution Biomass burning PM10

Related Article

Chemical Characterization of Wintertime Aerosols over Islands and Mountains in East Asia: Impacts of the Continental Asian Outflow

Shantanu Kumar Pani, Chung-Te Lee , Charles C.-K. Chou, Kojiro Shimada, Shiro Hatakeyama, Akinori Takami, Sheng-Hsiang Wang, Neng-Huei Lin
Volume: 17 | Issue: 12 | Pages: 3006-3036
DOI: 10.4209/aaqr.2017.03.0097
PDF | Supplemental material

Evaluation of δ13C in Carbonaceous Aerosol Source Apportionment at a Rural Measurement Site

Johan Martinsson , August Andersson, Moa K. Sporre, Johan Friberg, Adam Kristensson, Erik Swietlicki, Pål-Axel Olsson, Kristina Eriksson Stenström
Volume: 17 | Issue: 8 | Pages: 2081-2094
DOI: 10.4209/aaqr.2016.09.0392
PDF | Supplemental material

Gas- and Water-Phase PAHs Emitted from a Single Hydrogen-Oxygen PEM Fuel Cell

Kuo-Lin Huang , Tsung-Hsuan Tsai, Shui-Jen Chen, How-Ran Chao, Yi-Ming Kuo, Jen-Hsiung Tsai
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0410

PCDD/F Formation in Milled Fly Ash: Metal Chloride Catalysis

Ishrat Mubeen, Xiaoqing Lin , Alfons Buekens, Xuan Cao, Shengyong Lu, Minghui Tang, Jianhua Yan
Volume: 17 | Issue: 11 | Pages: 2858-2866
DOI: 10.4209/aaqr.2017.08.0279
PDF | Supplemental material