OPEN ACCESS

Articles online

Aromatic Hydrocarbons and Halocarbons at a Mountaintop in Southern China

Category: Regional Air Pollution

Volume: 16 | Issue: 3 | Pages: 478-491
DOI: 10.4209/aaqr.2015.03.0197
PDF | RIS | BibTeX

Minmin Yang1, Yan Wang 1, Jianmin Chen 1, Hongli Li2, Yuhua Li2

  • 1 School of Environment Science and Engineering, Shandong University, Jinan, Shandong 250100, China
  • 2 Shandong Environmental Monitoring Center, Jinan, Shandong 250101, China

Highlights

The sampling site is located on a mountain surrounded with industrial districts.

 Seasonal variations of aromatic hydrocarbons and halocarbons in spring and summer.

 OH loss rate and ozone formation potential of aromatic hydrocarbons are analyzed.

 The influence of long-range transport on the atmosphere is demonstrated.


Abstract

In this study, 45 ambient samples were collected in the summer of 2011 and spring of 2012 on Mount Lushan. The concentrations and seasonal distributions of aromatic hydrocarbons and halocarbons were measured and discussed. Moderate concentrations of individual species were found compared with other mountain sites; however, the measured concentrations were much lower than the values reported in cities. For aromatic hydrocarbons, benzene and m/p-xylene were the most abundant species in the spring, while benzene and toluene exhibited the largest contributions in the summer. For halocarbons, the concentrations of 1,2,4-trichlorobenzene, dichlorodifluoromethane and chloromethane were higher than other gases measured in the spring; and dichlorodifluoromethane and chloromethane contributed largest in the summer. The OH loss rates demonstrated that 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene were the dominant aromatic hydrocarbons for OH loss rates in the spring, while styrene and toluene contributed the largest to reactivity in the summer. For the ozone formation potential (OFP), 1,2,4-trimethylbenzene and m/p-xylene accounted for the largest fraction of the OFPs in the spring (24.3% and 23.7%), while toluene was the most abundant source of OFP (i.e., 43.7%) in the summer. M/p-xylene exhibited large contributions to OFP in both spring and summer (23.7% and 19.2%) of the OFPs. The T/B (0.80 and 0.73 in spring and summer respectively) ratios indicated that the sampled air masses were primarily influenced by automotive emissions. The 36-h backward trajectories of the sampled air masses and the corresponding daily concentrations of individual species suggested that long-range transport had a large effect on the atmosphere at the sampling site.

Keywords

Aromatic hydrocarbons Halocarbons Reactivity OFP Backward trajectories


Related Article

Residential Biomass Burning Emissions over Northwestern Himalayan Region of India: Chemical Characterization and Budget Estimation

Mohit Saxena , Sudhir Kumar Sharma, Nidhi Tomar, Humaira Ghayas, Avirup Sen, Rohtash Singh Garhwal, Naresh Chandra Gupta, Tuhin Kumar Mandal
Volume: 16 | Issue: 3 | Pages: 504-518
DOI: 10.4209/aaqr.2015.04.0237
PDF