Articles online

Detection of Trends and Seasonal Variation in Tropospheric Nitrogen Dioxide over Pakistan

Category: Urban Air Quality

Volume: 15 | Issue: 7 | Pages: 2508-2524
DOI: 10.4209/aaqr.2015.03.0157

Export Citation:  RIS | BibTeX

To cite this article:
Khokhar, M.F., Yasmin, N., Fatima, N., Beirle, S. and Wagner, T. (2015). Detection of Trends and Seasonal Variation in Tropospheric Nitrogen Dioxide over Pakistan. Aerosol Air Qual. Res. 15: 2508-2524. doi: 10.4209/aaqr.2015.03.0157.

Muhammad Fahim Khokhar 1, Naila Yasmin1, Naveen Fatima1, Steffen Beirle2, Thomas Wagner2

  • 1 Institute of Environmental Sciences and Engineering, National University of Sciences and Technology Islamabad, (null), Pakistan
  • 2 Max-Planck Institute for Chemistry Mainz, (null), Germany


First database of NO2 columns over Pakistan by using SCIAMACHY observation.
Temporal increase of 46% over Pakistan during the time period of 2002 to 2012.
Seasonality in NO2 columns is driven by OH concentration and anthropogenic activities.
Different seasonal cycles in NO2 columns are observed over different regions of Pakistan.
NOx emissions over Pakistan seem to be underestimated by about a factor of two.


In this study, spatial and temporal distributions of tropospheric NO2 vertical column densities over Pakistan during the time period of 2002–2012 are discussed. Data products from the satellite instrument SCIAMACHY are used. The results show a large NO2 growth over major cities of Pakistan, particularly the areas with rapid urbanization. Different seasonal cycles were observed in different regions of Pakistan. In the provinces of Punjab (north east), Khyber Paktunkhwa (north west) and Sindh (south east), NO2 columns are maximum in winter and minimum in summer months while a reversed seasonality was observed in the province of Baluchistan (south west). We compared the observed spatio-temporal patterns to existing emission inventories and found that for the most populated provinces the NOx emissions are clearly dominated by anthropogenic sources. In these areas also the strongest positive trends were observed. NOx released from soils and produced by lightning both together contribute about 20% for the provinces of Punjab, Sindh, and Khyber Paktunkhwa, while its contribution in Baluchistan is much stronger (~50%). NOx emissions from biomass burning are negligible. This finding can also explain the observed summer maximum in Baluchistan, since the highet lightning activity occurs during the Monsoon season. Our comparison also indicates that the inventories of anthropogenic NOx emissions over Pakistan seem to underestimate the true emissions by about a factor of two.


Tropospheric NO2 Seasonal cycle SCIAMACHY Temporal evolution Pakistan

Related Article

Particle Mass Concentrations and Number Size Distributions in 40 Homes in Germany: Indoor-to-outdoor Relationships, Diurnal and Seasonal Variation

Jiangyue Zhao, Wolfram Birmili, Birgit Wehner, Anja Daniels, Kay Weinhold, Lina Wang, Maik Merkel, Simonas Kecorius, Thomas Tuch, Ulrich Franck, Tareq Hussein, Alfred Wiedensohler

Spatiotemporal Variations and Contributing Factors of Air Pollutants in Almaty, Kazakhstan

Aiymgul Kerimray , Eldar Azbanbayev, Bulat Kenessov, Pavel Plotitsyn, Danara Alimbayeva, Ferhat Karaca
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.09.0464