Articles online

Analysis of Dust Aerosol by Using Dual-wavelength Lidar

Category: Articles

Volume: 12 | Issue: 4 | Pages: 608-614
DOI: 10.4209/aaqr.2011.11.0226

Export Citation:  RIS | BibTeX

Zhiting Wang, Lei Zhang , Xianjie Cao, Jianping Huang, Wu Zhang

  • Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China


Simulation of dust aerosol optical property is rather difficult, due to its extremely irregular shape, which often brings about difficulties in transforming its physical properties (such as size distribution) into optical properties (such as scattering phase function) in remote sensing retrieval and atmospheric radiation model. Some recent researches reveal that homogeneous spheroids seem to be an applicable optical model when dust particles are not much bigger than the wavelength, spheroids with reasonable shape distribution can simulate the scattering phase function of dust particles quite well. Based on the existed dual-wavelength lidar inversion algorithms, a modified method is proposed in the paper. Assuming the size distributions of dust aerosol can be modeled by bimodal lognormal distributions dominated by particles ranged in coarse mode, the size distributions and lidar ratios of dust aerosol at two wavelengths can be derived from dual-wavelength lidar measurement. By applying this algorithm to the data of dual-wavelength lidar at Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), preliminary results show that for the case of pure dust the retrieved size distribution agree with that observed by Aerodynamic Particle Sizer Spectrometer, and the derived mean lidar ratios are 45.7 ± 5.3 sr at 532 nm and 33.9 ± 1.5 sr at 1064 nm.


Dust aerosol Size distribution Dual-wavelength lidar Lidar ratio

Related Article

Exploring the Variation between EC and BC in a Variety of Locations

Gbenga Oladoyin Salako, Philip K. Hopke , David D. Cohen, Bilkis A. Begum, Swapan K. Biswas, Gauri Girish Pandit, Yong-Sam Chung, Shamsiah Abd Rahman, Mohd Suhaimi Hamzah, Perry Davy, Andreas Markwitz, Dagva Shagjjamba, Sereeter Lodoysamba, Wanna Wimolwattanapun, Supamatthree Bunprapob