OPEN ACCESS

Articles online

Determination of Dicarboxylic Acids and Levoglucosan in Fine Particles in the Kanto Plain, Japan, for Source Apportionment of Organic Aerosols

Category: Articles

Volume: 10 | Issue: 3 | Pages: 282-291
DOI: 10.4209/aaqr.2009.11.0075
PDF

Export Citation:  RIS | BibTeX

Kimiyo Kumagai 1,2, Akihiro Iijima1,3, Misato Shimoda1, Yoshinori Saitoh1, Kunihisa Kozawa1, Hiroyuki Hagino4, Kazuhiko Sakamoto2,5

  • 1 Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
  • 2 Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
  • 3 Takasaki City University of Economics, 1300 Kaminamie, Takasaki, Gunma 370-0801, Japan
  • 4 Japan Automobile Research Institute, 2530 Karima, Tsukuba, Ibaraki 305-0822, Japan
  • 5 Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan

Abstract

Fine particles were collected at a suburban site in the inland Kanto plain, Japan, in the spring and winter of 2007, and the summer of 2008. Organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), inorganic ions, and water-soluble organic compounds (dicarboxylic acids and levoglucosan) were analyzed. The WSOC/OC ratio was the highest in summer, followed by in spring, suggesting that organic aerosols were influenced by aging. The concentrations of total diacids (C2–C9) in spring and summer were higher than in winter. In each season, WSOC showed a strong positive correlation with the total diacids. Levoglucosan, which is recognized as a biomass burning tracer, was observed in a considerably higher concentration in winter than in spring or summer. In winter, WSOC also showed a strong positive correlation with levoglucosan. These results indicate that secondary formation is important as a source of WSOC and OC especially in the warm seasons, although emissions from biomass burning also contribute to WSOC in winter. By using the combination of source profile for biomass burning emission and EC tracer method, OC derived from biomass combustion in winter was calculated to be 47% of OC and OC derived from secondary formation in summer was calculated to be 75% of OC.

Keywords

Organic carbon Water-soluble organic carbon Secondary formation Biomass burning


Related Article

Aerosol Chemical Profile of Near-Source Biomass Burning Smoke in Sonla, Vietnam during 7-SEAS Campaigns in 2012 and 2013

Chung-Te Lee , Shidharth Sankar Ram, Dac Loc Nguyen, Charles C.K. Chou, Shih-Yu Chang, Neng-Huei Lin, Shuenn-Chin Chang, Ta-Chih Hsiao, Guey-Rong Sheu, Chang-Feng Ou-Yang, Kai Hsien Chi, Sheng-Hsiang Wang, Xue-Chang Wu
;