Articles online

Catalytic Decomposition of Ammonia over Bimetallic CuO/CeO2 Nanoparticle Catalyst

Category: Articles

Volume: 8 | Issue: 4 | Pages: 447-458
DOI: 10.4209/aaqr.2008.07.0031
PDF | RIS | BibTeX

Chang-Mao Hung

  • Department of Industry Engineering and Management, Yung-Ta Institute of Technology & Commerce, Pingtung 909, Taiwan, Republic of China


The oxidation of ammonia to nitrogen by selective catalytic oxidation (NH3-SCO) over a bimetallic CuO/CeO2 nanoparticle catalyst at temperatures between 423 and 673K. A bimetallic CuO/CeO2 nanoparticle catalyst was prepared by co-precipitation method at molar ratio of 6:4. This study also considers how the concentration of influent NH3 (C0 = 800 ppm), the space velocity (GHSV = 92000/hr), the relative humidity (RH = 12%) and the concentration of oxygen (O2 = 4%) affect the operational stability and the capacity for removing NH3. The catalysts were characterized before and after reaction using EDX, BET, ATR-FTIR, PSA and TEM. The catalytic performance show that the ammonia was removed by oxidation in the presence of bimetallic CuO/CeO2 nanoparticle catalyst, and around 98% at complete NH3 reduction was achieved, and a high selectivity toward N2 during catalytic oxidation over the catalyst at 673K with an oxygen content of 4.0%. Moreover, the effect of the reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of under 92000/hr.


Selective catalytic oxidation (SCO) Tubular fixed-bed reactor (TFBR) Ammonia Bimetallic CuO/CeO2 nanoparticle catalyst

Related Article

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062